

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ РУКОВОДСТВО ПО УСТАНОВКЕ, МОНТАЖУ И ЭКСПЛУАТАЦИИ

ВЕНТИЛЯТОРЫ КАНАЛЬНЫЕ ШУМОИЗОЛИРОВАННЫЕ CV-SH-EC

СОДЕРЖАНИЕ

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	2
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	2
2.1 Технические характеристики	2
2.2 Аэродинамические характеристики	3
2.3 Габаритные размеры	3
3 ЭЛЕКТРОПОДКЛЮЧЕНИЕ	4
3.1 Электрические схемы подключения вентиляторов	4
4 ЗАПУСК, НАЛАДКА, ЭКСПЛУАТАЦИЯ, ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
И МЕРЫ БЕЗОПАСНОСТИ	5
5 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	5

Производитель оставляет за собой право на внесение изменений без предварительного уведомления.

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1 Вентилятор представляет собой механическое устройство, предназначенное для перемещения чистого и сухого воздуха по воздуховодам систем кондиционирования и вентиляции и создающее необходимый для этого перепад давлений (на выходе и входе вентилятора).
- 1.2 Вентиляторы можно устанавливать в любом положении, преимущественно в горизонтальном.
- 1.3 Рабочее колесо вентиляторов имеет электронно-коммутируемый высокоэффективный двигатель (ЕС) и назад загнутые лопатки.
 - 1.4 Вентиляторы CV имеют шумоизолированный корпус.
- 1.5 Корпус изготавливается из оцинкованной стали. Соединение деталей корпуса производится либо с помощью точечной сварки, либо с помощью саморезов или заклепок.
 - 1.6 Условное обозначение:

Вентилятор канальный шумоизолированный CV-SH-100-EC/1-0,09/3300

где: CV-SH - модель вентилятора:

100 - типоразмер (диаметр подключения, мм);

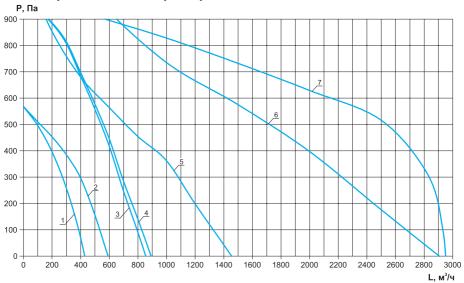
EC - тип электродвигателя;

1 - число фаз:

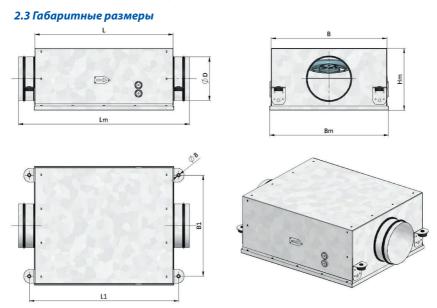
0,09 - мощность электродвигателя, кВт;

3300 - частота вращения электродвигателя, об/мин.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ


2.1 Технические характеристики

Maran	Номер	Частота вращения	Мощность,	Ток	Число фаз	Шум Lp, дБ(A)	Температура, °C	
Модель	кривой	макс. п, об/мин	кВт	ном., А			tmin	tmax
CV-SH-100-EC/1-0,09/3300	1	3300	0,09	0,7	1	38,2	-30	+40
CV-SH-125-EC/1-0,09/3300	2	3300	0,09	0,7	1	38,2	-30	+40
CV-SH-160-EC/1-0,18/4100	3	4100	0,18	1	1	39,8	-30	+40
CV-SH-200-EC/1-0,18/4100	4	4100	0,18	1	1	39,8	-30	+40
CV-SH-250-EC/1-0,23/2700	5	2700	0,23	1,7	1	43,0	-30	+40
CV-SH-315-EC/1-0,49/2650	6	2650	0,49	2,3	1	42,5	-30	+40
CV-SH-315-EC/1-0,59/2740	7	2740	0,59	2,1	1	42,5	-30	+40


Lp, дБ(A) - Уровень звукового давления в окружение на расстоянии 3 метров.

Параметры приведены для максимальной скорости вращения. Регулирование доступно в диапазоне напряжений 1,5 - 10 В.

2.2 Аэродинамические характеристики

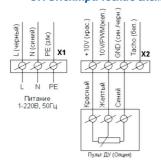
^{*} Технические параметры могут варьироваться в пределах ±10%.

Типоразмер	d	L	L1	В	B1	Lm	Bm	Hm	Масса, кг
100	98	460	502	350	297	580	362	185	10,8
125	123	460	502	390	337	580	402	185	11,5
160	158	500	542	420	367	620	432	225	12,7
200	198	500	542	450	397	620	462	255	13,6
250	248	550	592	500	447	670	512	305	15
315	313	600	642	550	497	720	562	355	17,1

3 ЭЛЕКТРОПОДКЛЮЧЕНИЕ

Сеть электропитания должна быть оснащена стабилизатором напряжения, который не позволит подавать напряжение более чем на 10% отличающегося от номинального значения.

Электроподключение должен проводить только квалифицированный персонал, имеющий необходимый допуск к выполнению данных работ. Все элементы, требующие электроподключения, имеют электросхемы, в соответствии с которыми необходимо произвести подключение. Схемы продублированы на корпусах соответствующих элементов:


Вентиляторы должны управляться от внешнего сигнала.

Варианты управления:

- **вкл-выкл**: подача +10V, выходящих из двигателя, на клемму входа 0-10V. Это самый простой способ запустить вентилятор может быть реализован простым замыкающим контактом (безпотенциальным). В данном случае следует помнить, что вентилятор будет включаться на максимальную мощность;
- плавное управление сигналом 0-10В от внешнего контроллера: на вход 0-10V;
- управление внешним потенциометром 10 кОм такой вариант возможен посредством опции, приобретаемой отдельно.

Ниже приведены примеры схем подключения к данному пульту управления.

3.1 Электрические схемы подключения вентиляторов

При неправильном подключении выходит из строя плата управления!

Кабель питания: 3х1,5 мм² (L, N, PE).

Номинал автоматического выключателя: 1Р Сб.

Кабель управления: 3x0,5 мм² (экранированный).

На схеме отображен вариант управления пультом ДУ с поворотным потенциометром (поставляется опционально).

Данные значения носят рекомендательный характер и должны подбираться в соответствии с ПУЭ - по типу применяемого кабеля и по условиям его прокладки.

4 ЗАПУСК, НАЛАДКА, ЭКСПЛУАТАЦИЯ, ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И МЕРЫ БЕЗОПАСНОСТИ

4.1 Запуск должен производить специально обученный персонал. Перед запуском необходимо проверить правильность монтажа и электроподключения, убедится, что питающее напряжение соответствует номинальным параметрам. После запуска необходимо проверить рабочие токи электродвигателей и сравнить их с номинальными.

Если рабочие токи превышают номинальные значения или наблюдается перегрев двигателя, дальнейшая эксплуатация запрещена.

- 4.2 Завышение рабочих токов электродвигателей центробежных вентиляторов может быть связано с заниженным сопротивлением сети (как следствие – завышенные расходы). В данном случае необходимо снизить расход воздуха до расчетных параметров.
- 4.3 Рекомендуется размещать вентиляторы в отдельных технических помещениях, применять шумоизолирующие ограждения, экраны, кожухи и т.п. Для снижения передачи шума по сети воздуховодов рекомендуется применять шумоглушители и гибкие вставки. Монтаж осуществлять через виброгасящие материалы.
- 4.4 Необходимо регулярно проводить осмотры и техническое обслуживание оборудования. Ресурс работы (Показатель надежности): 40 000 часов.
 - 4.5 Вентиляторы должны эксплуатироваться во взрывобезопасных помещениях.

Для сохранения гарантийных обязательств, после запуска необходимо составить отчет с указанием рабочих параметров установки (напряжение, токи, расход воздуха).

5 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

- 5.1 Вентиляторы транспортируются в собранном виде.
- 5.2 Запрещается поднимать вентилятор за клеммную коробку.
- 5.3 Вентиляторы консервации не подвергаются.

Изготовлено для:

ГК РОВЕН